October 13, 2010:
The U.S. Army is buying better software for its PackBot 510/FasTac remotely controlled robots. Increasingly, it's the software, not the basic design or accessories, that are the most important developments for the PackBot (and similar robots). The new software makes the PackBot easier to use for experienced operators, and easier to learn for novices. This is done by giving the droid more intelligence of its own, so that it can anticipate common user actions, and move more quickly and precisely to get the job done. The work includes everything from checking under vehicles, or inside buildings for bombs, to closely examining bombs or searching inside buildings or caves for enemy troops. There are also accessories for seeking out chemical, biological or nuclear weapons. Software and sensors are the growth area for these combat robots, especially with the army no longer able to buy as many as it used to. Manufacturer iRobot has sold over 3,500 PackBots, earning several hundred million dollars in sales.
Weighing 24 kg (53 pounds), and 406mm (16 inches) wide, 686mm (27 inches) long and 406mm high, The PackBot 510 has one flexible arm with the camera on it, and another flexible arm with a gripper hand. Actually, there are over sixty accessories available, but most PackBots go to work with the flexible arm and one or more cameras. Top speed is 9 kilometers an hour, and they cost $75,000 each. This PackBot can run four hours (over 25 kilometers of travel) on one battery charge. The gripper arm can extend up to 106.7cm (42 inches) and lift 2.4-7.5 kg (5-15 pounds) depending on how close the arm is to the bot. The PackBot 510/FasTac model was introduced early last year.
The PackBot is controlled via software and communications on a laptop, with a well-though-out game controller for actually manipulating the bot. Range of radio control is 1,000 meters. The PackBot is waterproof. Operators usually employ a ruggedized, 14 pound laptop, and a game console type controller, to operate the droids. The PackBot has zoom on the camera, and the camera arm has infrared (invisible to enemy unless they are wearing special glasses) and LED spotlights. Another option is two way radio, so that the operator, or a translator, can speak to someone near the droid. Earlier this year, the army cancelled orders for thousands of PackBot and Talon combat robots. With the plunge in roadside bomb activity in Iraq, and the weak efforts of the Taliban in Afghanistan to use those devices, there is a sharp drop in need for these small robots.
Currently, the Department of Defense owns about 6,000 small robots, about a third of them PackBots. Most of all these droids are in the army, and a little over half are in a combat zone. There would be a lot more of these small robots out there if they were a bit smaller and had better sensors. Because of these shortcomings, efforts to have the infantry regularly use the small robots in combat have not been successful. The older 42 pound Packbot and hundred pound Talon were fine for dealing with roadside bombs, but too big and heavy to easily haul around the battlefield. But most troops admitted that if the small droids were a bit smaller and lighter, and had better ability to sense what was around ("situational awareness") them, they would be more welcome.
Before September 11, 2001, the army didn't expect to have robots like PackBot until 2013. But the technology was already there, and the war created a major demand. The robots expected in 2013 were to be part of a new generation of gear called FCS (Future Combat Systems). These small robots are still waiting for some of the high tech FCS communications and sensor equipment, and are using off-the-shelf stuff in the meantime. The troops don't care, as long as it works.
Tens of thousands of troops have combat experience with these small droids, mainly for bomb disposal work. A small number of troops have used the robots for security jobs, and an even smaller group for combat work. It will be another 5-10 years before several new generations of droids, and more powerful sensors and software, can be developed, delivered and evaluated by the troops. The droids will never have the same senses (sight, hearing, smell, vibrations) that humans do, but they are acquiring similar senses that are useful enough. These are becoming more powerful, and a new generation of data analysis software makes it possible for near-future droids to quickly interpret what they "sense" and let their operator know, quickly, that there is something out there, and approximately where it is. Within the next few years, there will be a droid that will turn its sensors (camera/thermal sensor) around to give the operator a better look at what it "heard" or "felt". Smell will take a little longer, but it's on the way. By then, the droids will also be able to operate on their own a lot, and respond to voice commands. In ten years, there will be small droids that you won't be able to sneak up on. That's the sort of bot the troops want to go into action with. And at that point, infantry units will have them as part of their basic equipment.