Logistics: Liquid Death

Archives

October 26, 2011: American army and marine commanders are desperate to reduce fuel consumption. They point out that during World War II, the first war in which American forces were mechanized, each soldier required 4-5 liters (one gallon) of fuel per day. But by 2003, and the invasion of Iraq, fuel consumption was twenty times higher. By 2003, it was accepted that that turning a modern mechanized division loose meant supplying those troops at the rate of 80-120 liters (20-30 gallons) of fuel per man per day. As the 3rd Infantry Division moved from Kuwait to Baghdad in 2003, some 20,000 troops were involved. That required some 200 tanker loads of fuel per day. Initially, the vehicles in the division carry enough fuel to go 200-300 kilometers on internal fuel. But you don't want your vehicles to run until their tanks are dry, so at least once a day, you try to top everyone off. The route of the 3rd Infantry Division covered about 700 kilometers of road. In addition to fuel, you need about a 45-90 kg (100-200 pounds) of other supplies per man per day (mostly ammo, but also batteries, food and the like.) Once inside Baghdad, and no longer moving all the time, the fuel requirement came way down. But on the march, the advancing combat brigades were tethered by convoys of fuel trucks going back and forth to the supply bases in Kuwait. But once the U.S. began building bases for the combat brigades, it was found that the use of generators, especially for air conditioning, kept fuel requirements high (over 80 liters per man per day), which is why most of the supply trucks are still carrying fuel.

There are no easy solutions for this. Vehicles are larger, and require more fuel than they did 65 years ago. Tanks weigh twice as much, as do most other armored vehicles. There are more trucks and armored vehicles, as well as a lot more electronic equipment and air conditioning to keep it cool. It was found that air conditioned living quarters were a huge boost to morale, and a way to reduce combat stress. That required lots of fuel. So far, the army and marines have sought to equip the troops with more energy sources that do not require fuel to be trucked, or flown, in. This is especially important for troops who are out on operations that might last a few days.

Batteries, and the fuel to run generators for recharging, have become a major supply item. For example, a three day operation by an infantry platoon (30 men), consumes six kg (6.6 pounds) of batteries per man. Rechargeable batteries cut that by more than half, as long as you have some way to recharge them. Special Forces are particularly hard hit by this, as they often have to go in by foot, to avoid detection, and set up a surveillance operation that consumes a lot of batteries. This is very common in Afghanistan.

Solutions are being sought. For example, last year a company (about 200 personnel) of American marines conducted a desert training exercise to see how long they could run how much equipment using solar power. Solar panels were incorporated into equipment (like a cloth like panel that was draped over a tent) or set up with a number of solar panels to act as a "solar generator.") As a result, for eight straight days, the marines were able to power all their radios and laptops (by recharging batteries) via solar panels. There is a lot of other battery powered gear, but radios and laptops are the big energy eaters. Feed them, and you have eliminated most of the power demand for troops operating on foot. The equipment and techniques used doing this are now being transferred to marines in Afghanistan. This sort of thing saves lives and money. Marines have to guard a lot of their supply convoys, two-thirds them carrying fuel or water, and for every fifty truckloads brought in, one marine is killed or wounded. This is often avoided by hiring locals to provide convoy security, but that option often creates another warlord in the area.

Thus all American commanders in Afghanistan want more renewable fuel sources. Combat commanders have done the math, and with more combat units out and about these days, they are demanding more solar panels and fuel cells, in order to lower the demand for generator fuel and batteries. With all those computers and electronic gadgets out there, the demand for electricity, especially by units in combat, is huge.

For decades, it was believed that hydrogen powered fuel cells would replace fossil fuel (JP-5, similar to jet fuel) powered generators. But fuel cells have been the next-big-thing for nearly a century. That said, small fuel cells are beginning to appear. The U.S. Army is installing them in tanks and trucks, as a source of auxiliary power. This points out that the larger fuel cells are now quite ready to replace the large generators (the main consumer of all that fuel). While the fuel cells cost more than ten times as much as JP-5 powered generators, that JP-5 costs about 40 times more than the same fuel used back in the United States. That's because of the transportation cost (up to $25/liter or $100/gallon) of fuel. Thus fuel cells are still a cheaper alternative and the more expensive fuel cell generator quickly pays for itself in a combat zone, and saves the lives of those operating and protecting all those fuel convoys. Another use for small fuel cells is to ease the growing load of batteries carried into combat.

Five years ago, the U.S. Air Force began using these to replace electricity generators in some of their bases. This was a field test of the technology, and after some more tweaking, the fuel cell devices proved reliable. The army adopted the air force approach, and is still developing smaller versions of fuel cells for the infantry. For example, the typical weight of batteries could be reduced by over 60 percent by carrying a fuel cell, and its fuel, for creating energy for recharging batteries. The army is planning to use fuel cells that run off small cartridges of methanol, which are much lighter to ship, and carry, than batteries, and deliver much more electricity per pound than conventional batteries. The army is also testing larger fuel cell generators, that use JP-5 fuel, but require less than half as much (as diesel engine generators) to produce the same amount of electricity.

The lightweight fuel cells are starting to show up in the civilian market. The first models are expensive (several times the cost of a comparable gasoline powered generator), but the intended market, initially, will be backpackers, and the many soldiers who buy additional equipment with their own money. Militarized fuel cell systems are soon to enter service. But some troops are already buying the commercial versions. For example, two years ago Toshiba offered a ten ounce (289 gram) fuel cell that can recharge two cell phones at once. This device cost $300 and the 50 ml (two ounce) methanol cartridge costs $30. Since then, several other manufacturers have come out with similar devices costing less than $100.

A major problem with these small fuel cell devices is that it is mainly for items like cell phones and iPods, or anything that can get its charge via a USB connector. For military use, you need a device that can recharge common batteries, and specialized ones for military equipment. Technically, that is a simple matter, as is scaling up the current miniature fuel cell devices (about the size of a hand held game player) to provide more power. The problem with fuel cells remains their temperamental technology and high cost. But the military is willing to buy one that can stand rough handling, even at a high price, because of the even higher cost of getting fuel to the combat zone.