Leadership: Fighter Pilots Fading Away

Archives

May 19, 2009: The Chairman of the Joint Chiefs (a navy admiral and the senior military guy in the Pentagon) and his boss (the Secretary of Defense) have both come out and said that the future of combat aviation is UAVs. The Secretary of Defense said that the next heavy bomber would probably be a UAV. The Chairman of the Joint Chiefs believes that the F-35 will probably be last American manned combat aircraft.

UAVs are nothing new. Guided missiles are UAVs that are used only once, and these were developed during World War II (nearly 70 years ago). By the 1970s, radio controlled aircraft, that could be reused, became practical. There were even experiments with rigging manned aircraft to be operated remotely. Tests with these UAVs found that they were superior in combat to manned aircraft. But UAVs did not take over three decades ago, because of shortcomings in communications (no satellite datalinks) and situational awareness (no cheap, small and reliable cameras placed all around the aircraft and used, along with GPS, to inform the remote operator where the aircraft was and what it was doing). Those two problems have been solved in the past three decades. As the senior brass at the Pentagon have concluded, it's time for the UAVs to take over.

It should be no surprise that a navy admiral speaks so enthusiastically about UAVs. Late last year, the U.S. Navy rolled out its first combat UAV (or UCAS, for Joint Unmanned Combat Aerial System). This was part of a six year long, $636 million contract to build and test two X-47B UAVs. The test program calls for first flight this  year and first carrier landing next year. The 15 ton X-47B has a wingspan of 62 feet (whose outer 15 foot portions fold up to save space on the carrier). It carries a two ton payload and be able to stay in the air for twelve hours.

Six years ago, the X-47A UCAV made its first flight. Development of this aircraft began in 2001. The Air Force was also testing the X-45 UCAV, which also had a naval version (the X-46). The X-45 program began in 1999, and the eight ton (max takeoff weight, with two ton payload) aircraft was ready for operational tests in 2006. The X-46 has a different wing layout, and a range of 1,100 kilometers, carrying a payload of two tons. The X-47A also has a two ton payload and a range of 1,600 kilometers. Unlike the X-45, which is built to be stored for long periods, the X-47A was built for sustained use aboard a carrier. All of these aircraft are stealthy and can operate completely on their own (including landing and takeoff, under software control). The UCAVs would be used for dangerous missions, like destroying enemy air defenses, and reconnaissance. Even air force commanders are eager to turn over SEAD (Suppression of Enemy Air Defenses) missions to UAVs. SEAD is the most dangerous mission for combat pilots.

The Department of Defense also wants the new UAV combat aircraft in service by the end of the next decade, some twenty years ahead of schedule (planned in the 1990s). The F-35 is expected to cease production in 2034, more than a decade after the first combat UAVs, that can match F-35 performance, enter service.

Over the last few years, it was decided that the air force and navy be allowed to develop combat UAVs to suit their particular needs. The X45 was meant mainly for those really dangerous bombing and SEAD missions. But the Pentagon finally got hip to the fact that the UCAS developers were coming up with an aircraft that could replace all current fighter-bombers. This was partly because of the success of the X45 in reaching its development goals, and the real-world success of the Predator (in finding, and attacking, targets) and Global Hawk (in finding stuff after flying half way around the world by itself.)

In the last few years, the X45A passed tests for formation flying, and dropping a JDAM (actually the new 250 pound SDB version). An X45C could carry eight SDB (250 pound small diameter bombs), or up to two tons of other JDAMs.

The planned X45C would weigh in at about 19 tons, have a 2.2 ton payload and be 39 feet long (with a 49 foot wingspan.) The X-45A, built for development only, is 27 feet long, has a wingspan of 34 feet and has a payload of 1.2 tons. The X-45C was designed to hit targets 2,300 kilometers away and be used for bombing and reconnaissance missions. Each X-45C was to cost about $30 million, depending on how extensive, and expensive, its electronic equipment was. Believing they could do better, the U.S. Air Force cancelled its X-45 program three years ago, and is now looking into different UCAV designs.

The one topic no one wants to touch at the moment is air-to-air. This appears to be the last job left for pilots of combat aircraft. The geeks believe they have this one licked, and are giving the pilot generals the, "bring it on" look. The generals are not keen to test their manned aircraft against a UAV, but this will change the minute another country, like China or Russia, demonstrates that they are seriously moving in that direction.

Meanwhile, many UCAV designers want to equip the UCAVs with sensors (various types of video cams) to give the aircraft the same kind of "situational awareness" that piloted aircraft have. But for this to work, the UCAV would need software that would enable it to think like a fighter pilot. The techies say this can be done. But the fighter pilots that run the air force and naval aviation are not so sure. There also some worry about job security and pilots being replaced by robotic aircraft. All this is headed for some mock combat exercise between manned and unmanned fighters. Such tests will be a competition between pilots and programmers. But the programmer community contains fighter pilots as well, and the smart money is on the geeks to outsmart, or at least outfly, the human pilots. No one thinks it will be a lopsided battle, but the robotic aircraft are so much cheaper, that even a dead even finish favors the pilotless aircraft. The geeks have already demonstrated the prowess of their artificial fighter pilots in simulators, and even flight simulators available in the game market.

The U.S. Navy has invested several billion dollars, so far, in developing combat UAVs (Unmanned Aerial Vehicles) that can operate from aircraft carriers, and replace some of the manned aircraft on carriers. There are other problems with the combat UAVs, and these concern just how they will be used. Currently, the thinking is that they will be sort of like cruise missiles that return, and will be most useful for reconnaissance and dangerous missions like taking out enemy air defenses. But many UAV engineers, and some fighter pilots, believe that combat UAVs could revolutionize air warfare. Combat UAVs can perform maneuvers that a manned aircraft cannot (because there are limits to the g-forces a human body can tolerate.) In theory, software and sensors would make a combat UAV much quicker to sort out a combat situation, and make the right move. For the moment, this aspect of UAV development is officially off the table. But once combat UAVs start operating, and that will be by the end of the decade, there will be much pressure to let combat UAVs rule the skies, in addition to scouting and bombing. The senior Pentagon leadership have seen this future, and believe it is the real one.

 

X

ad

Help Keep Us From Drying Up

We need your help! Our subscription base has slowly been dwindling.

Each month we count on your contribute. You can support us in the following ways:

  1. Make sure you spread the word about us. Two ways to do that are to like us on Facebook and follow us on Twitter.
  2. Subscribe to our daily newsletter. We’ll send the news to your email box, and you don’t have to come to the site unless you want to read columns or see photos.
  3. You can contribute to the health of StrategyPage.
Subscribe   contribute   Close